Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact
نویسندگان
چکیده
Topologies of large deformation Contact-aided Compliant Mechanisms (CCMs), with self and mutual contact, exemplified via path generation applications, are designed using the continuum synthesis approach. Design domains are parameterized using honeycomb tessellation. Assignment of material to each cell, and generation of rigid contact surfaces, are accomplished via suitably sizing and positioning negative circular masks. To facilitate contact analysis, boundary smoothing is implemented. Mean value coordinates are employed to compute shape functions, as many regular hexagonal cells get degenerated into irregular, concave polygons as a consequence of boundary smoothing. Both, geometric and material nonlinearities are considered in the finite element analysis. The augmented Lagrange multiplier method in association with an active set strategy is employed to incorporate both self and mutual contact. CCMs are evolved using the stochastic hill climber search. Synthesized contact-aided compliant continua trace paths with single and importantly, multiple kinks and experience multiple contact interactions pertaining to both self and mutual contact modes.
منابع مشابه
Large Deflection Analysis of Compliant Beams of Variable Thickness and Non-Homogenous Material under Combined Load and Multiple Boundary Conditions
This paper studies a new approach to analyze the large deflection behavior of prismatic and non-prismatic beams of non-homogenous material under combined load and multiple boundary conditions. The mathematical formulation has been derived which led to a set of six first-order ordinary differential equations. The geometric nonlinearity was solved numerically using the multiple shooting method co...
متن کاملAn Automated Design Synthesis Method for Compliant Mechanisms with Application to Morphing Wings
An automated design synthesis method is developed to design an airfoil with a reconfigurable shape, which can change from one type of geometry to another. A design synthesis method using unit truss approach and particle swarm optimization is presented. In the unit truss approach, unit truss is used as a new unit cell for mechanics analysis of cellular structures, including lightweight structure...
متن کاملTopology optimization for synthesis of contact-aided compliant mechanisms using regularized contact modeling
A topology optimization technique for systematically designing contact-aided compliant mechanisms (CCM) is presented in this paper. A CCM is a single piece elastic body that uses intermittent contacts in addition to elastic deformation to transmit force and motion. Contact interactions give rise to interesting nonlinear and nonsmooth behaviors even under the small deflection assumption made in ...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملDeformation Characteristics of Composite Structures
The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.06049 شماره
صفحات -
تاریخ انتشار 2018